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Abstract

In this text, we try to show step by step how one can get a never-ending
inflationary scenario and thus analyze it to deduce e.g. some regime of
theory’s parameters. In particular, we consider the Hilltop and Starobin-
ski Inflation. Numerical analysis shows that the Starobinski Inflation does
not violate the No Eternal Inflation Principle and p = 3 Hilltop model
parameters are restricted.

1 Introduction1

1.1 General Relativity

General Relativity is a theory of Lorentzian manifolds namely pairs of smooth
Hausdorff manifolds and metrics gµν with Lorentzian signature (1,3), which
are smooth with respect to the points of a given manifold. Such models are
equivalent up to a diffeomorphism.
We will use following definitions:

Γµνξ =
1

2
gµη (∂ξgνη + ∂νgξη − ∂ηgνξ) ,

Rµν =∂ξΓ
ξ
µν − ∂µΓξξν + ΓξξηΓηµν − ΓξµηΓηξν ,

R =gµνRµν .

Einstein-Hilbert action in a particular spacetime is given by:

SEH =

∫
d4x
√
|g| (R+ Λ + Lm) ,

where Λ is cosmological constant (dark energy term, later omitted) and Lm is
a lagrangian density corresponding to matter.

∗JR- Sec. 1, J L- Sec. 2, AS- Sec. 3, 5, JC- Sec. 4, 6
1The whole chapter is based on this work. (1)
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By variation over gµν of the action we can deduce Einstein equations:

Rµν +
1

2
Rgµν + Λgµν = Tµν ,

where by definition δSm
δgµν

=
∫
d4xTµνδgµν and Sm is action corresponding only

to matter.

1.2 FLRW cosmology

Cosmological models try to capture the whole Universe and its evolution within
formalism of General Relativity. Observations, including cosmic microwave
background radiation, conclude that our Universe is highly homogeneous and
isotropic in large scales. Homogeneity means that the Universe has even dis-
tribution of matter and isotropy says that Universe ”looks” identically in each
direction. The FLRW metrics are the only one satisfying both homogenity and
isotropy conditions. They can be written in spherical coordinates as follows:

ds2 = dt2 − a2(t)

(
1

1− kR2
dR2 +R2dθ2 +R2sin2θdφ2

)
,

where k ∈ {−1, 0, 1} is describing curvature of spatial dimensions.
Alternatively, we can rewrite it using dχ2 = 1

1−kR2 dR
2 into:

ds2 = dt2 − a2(t)
(
dχ2 + sinh2χdΩ2

)
, for k = −1,

ds2 = dt2 − a2(t)
(
dχ2 + χ2dΩ2

)
, for k = 0,

ds2 = dt2 − a2(t)
(
dχ2 + sin2χdΩ2

)
, for k = 1,

where dΩ2 is canonical metric form on S2. In our Universe curvature is almost
negligible and thus we consider k = 0.
The energy-momentum tensor of the perfect fluid may be written as:

Tµν = (ε+ p)uµuν − pδµν ,

where ε - energy density, p - pressure, uµ - 4-velocity.
Non-zero Christoffel symbols (of second kind) for FLRW metrics are:

Γi0j =
1

2
gik

∂gjk
∂t

=
ȧ

a
δij ,

Γ0
ij =aȧgij .

Consequently, Ricci tensor has the following nontrival terms:

R00 =− 3
ȧ

a
,

Rij =(äa+ 2ȧ2 + 2k)hij
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and thus Ricci scalar is equal to:

R = gµνRµν = R00 −
1

a2
δijRij = −6

(
ä

a
+
ȧ2

a2
+

k

a2

)
.

Einstein equations can be reformulated as follows:

Rµν = κ

(
Tµν −

1

2
Tδµν

)
,

with T = ε− 3p, κ = 8πG
c4 and summed up to the Friedmann equations:

−3
ä

a
=
κ

2
(ε+ 3p),

2ȧ2 + aä+ 2k

a2
=
κ

2
(p− ε).

Introducing Hubble parameter H = ȧ
a , conservation of energy ∇µTµν = 0 ⇒

dε
dt = −3H(ε+ p) and assuming constant depedence p = wε we can solve equa-
tions above:

ε ∝ a−3(1+w),

a(t) ∝ eHt, for w = −1,

a(t) ∝ t
2

3(1+w) otherwise.

2 Inflation2

In general terms inflation is a stage of accelerated expansion of the Universe
during which gravity acts as repulsive force. The end of inflation, called the
graceful exit, is marked by the transition from accelerated to decelerated Fried-
man expansion. Recall the Friedmann equation:

ä

a
= −4πG

3
(ε+ 3p) .

The stage of accelerated expansion can take place when ä > 0. That necessarily
results in violation of strong energy condition (ε+ 3p) > 0. The example of
such violation is the de Sitter Universe solution. However it does not provide
the conditions for the graceful exit. The graceful exit can be accomplished by
allowing Hubble parameter varying in time. From the left hand side of the
considered equation:

ä

a
= H2 + Ḣ

one can see the graceful exit happens where ä = 0, which takes place forH2 ∼ Ḣ.
CMB observational data gives constraint on the ratio ȧi

ȧ0
< 10−5. Additionally

2The chapter is based on (1),(2).
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ȧf
ȧ0
> 1028, hence:

ȧi
ȧf

ȧf
ȧ0

=
ai
af

Hi

Hf

ȧf
ȧ0

< 10−5

and:
af
ai

> 1033 Hi

Hf
.

Therefore, the ratio of final and initial scale factors is:

af
ai
∼ exp (Hitf ) > 1033.

The duration of inflation can be measured by a number of e-folds. E-fold cor-
responds to a period in which the Universe expands by a factor e. From the
estimates above tf > 75H−1

i and inflation lasts roughly more than 75 e-folds.

2.1 Slow roll conditions

In order to formulate the model of inflation followed by the graceful exit one
introduces the scalar field called the inflaton. In the classical description of
inflation we consider classical scalar field with homogeneous distribution. In
that case the action is of the form:

S =

∫
Ω

d4x
√
|g|
(

1

2
φ̇2 − V (φ)

)
and the Klein-Gordon equation in FLRW background is:

φ̈+ 3Hφ̇+ V,φ = 0.

We can define energy density and pressure:

ε =
1

2
φ̇2 + V (φ) ,

p =
1

2
φ̇2 − V (φ) .

The equation of state is given by:

w =
p

ε
=

1
2 φ̇

2 − V (φ)
1
2 φ̇

2 + V (φ)
.

If φ̇2 � V (φ) then the equation of state takes the form w ' −1 < − 1
3 satisfying

condition for accelerated expansion. This is the first slow-roll condition:

φ̇2 � V (φ) .

Klein-Gordon equation has an attractor solution of the form: φ̇ = V,φ/3H for
large friction term. As this is expected for inflation, we get the second slow-roll
condition:

φ̈� 3Hφ̇.
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It might be convenient to introduce two slow-roll parameters ε, η:

ε = − Ḣ

H2
' 1

2

(
V,φ
V

)2

,

η =
φ̈

Hφ̇
� 1.

Then the slow-roll conditions can be expressed in terms of potential:

ε ' M2
P

2

(
V,φ
V

)2

,

η 'M2
P

V,φφ
V
� 1.

The end of the process of inflation is marked by ε ' 1. Time of inflation can be
derived from the definition:

dN = Hdt,

where the number of e-folds N is calculated by integration. After taking into
consideration the slow-roll conditions, the expression for N takes the form:

N =

∫ tend

ti

Hdt =

∫ φend

φi

H

φ̇
dφ =

∫ φi

φend

V (φ)

V,φ (φ)
dφ.

From that result we can derive the solution for scale factor:

a (φ) ' ai exp

(
8π

∫ φi

φ

V

V,φ
dφ

)
.

2.2 Primordial inhomogeneities

CMB observational data show the existence of inhomogeneities in the Universe
of the order δT/T ' 10−5. Inflation preserves homogeneity given the homo-
geneous state at the start of the expansion. However, it can generate inhomo-
geneities from quantum fluctuations. In cosmological models preceding inflation
inhomogeneities were postulated and the initial conditions were set to match the
observational data. The advantage of the inflationary cosmology is the ability to
explain the origin of the inhomogeneities and calculate their spectrum. It seems
convenient to describe inhomogeneities as random fields with each Fourier com-
ponent having random Gaussian distribution with variance σ2

k ≡ |Φk|2. The
expression for power spectrum is of the form:

PS =
|Φk|2k3

2π2
.

We can define spectral index as:

ns − 1 =
d lnPS
d ln k

.
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2.2.1 Scalar perturbations

Consider the general form of action for scalar field:

S =
1

16π

∫
d4x
√
|g|p (X,φ)

with:

X =
1

2
gµν∂µφ∂νφ

and the FLRW metric with k = 0. The equations for background parameters
φ0 and a (t) are:

H2 =
8πG

3
ε,

ε̇ = −3H (ε+ p) .

The ratio of partial derivatives of pressure and energy density is called speed of
sound for perturbations:

c2s =
p,X
ε,X

=
ε+ p

2Xε,X
.

In the case of the canonical scalar field, the speed of sound is equal to the speed
of light cS = 1. We can describe the inhomogeneities in the field as follows:

φ (t, x) = φ0 (t) + δφ (t, x) .

The field inhomogeneities induce metric perturbations:

ds2 = dt2 (1 + 2Φ)− a (t)
2
δij (1− 2Φ) dxidxk.

We can introduce new variables ζ, ξ defined by relations:

Φa = 4πGHξ,

δφ

φ̇
=

ζ

H
− 4πG

a
ξ.

It is possible to write linear equations for ζ and ξ:

ξ̇ =
a (ε+ p)

H2
ζ,

ζ̇ =
c2sH

2

a3 (ε+ p)
∆ξ.

With the definition of another variables:

z =
a (ε+ p)

1
2

csH
,

v = zζ
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one can see v is a canonical quantisation variable with Klein-Gordon equation:

v′′ − c2s∆v −
z′′

z
v = 0.

ζ is related to metric perturbations Φ by:

ζ =
5ε+ 3p

3ε+ p
Φ +

2

3

ε

ε+ p

Φ̇

H

and its power spectrum is of the form:

Pζ =
1

2π2
|ζk|2k3 =

k3

2π2

|vk|2

z2
.

2.2.2 Tensorial perturbations

The action for traceless tensor perturbations hij is expressed by:

S =
1

64πG

∫
a2
(
hi

′

j h
j′

i − h
i
j,lh

j,l
i

)
dηd3x.

Fourier expansion of the perturbation has the form:

hij (x, η) =

∫
hk (η) eij (k) eikx

d3k

2π3/2
.

If we define variable vk:

vk =

√
eije

j
i

32πG
ahk,

then the action for perturbations can be reformulated:

S =
1

2

∫ (
v′kv
′
−k −

(
k2 − a′′

a

)
vkv−k

)
dηd3x

with equation of motion for vk:

v′′k + ω2
k (η) vk = 0,

ω2
k (η) = k2 − a′′

a
.

The expression for power spectrum of tensorial perturbations is:

Ph =
16|vk|2k3

πa2
.

If we use the approximation that gravitational waves depend weakly on equation
of state and set H = HΛ then we obtain the solution for vk:

vk (η) =
1√
k

(
1 +

i

kη

)
exp (ik (η − ηi))
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and the power spectrum:

Ph =
8H2

Λ

π
[1 + (kη)

2
].

In the long wavelength case: csk ' Ha, the power spectrum takes the form:

Ph '
16H2

π

and the spectral index is:

nT =
d lnPh
d ln k

' −3
(

1 +
p

ε

)
.

Tensor-to-scalar ratio is defined as:

r =
Ph
PS
' 24[cS

(
1 +

p

ε

)
].

3 Starobinsky Inflation

In 1980 Starobisky (3) proposed a model where a pure modified gravitational
action can cause non-singular evolution of the Universe, namely:

S =
1

2

∫ √
|g|d4x

(
M2
pR+

1

6M2
R2

)
, (1)

where M is some ”mass” parameter, with value taken to fit the Planck data.
Now we will rewrite the action into equivalent linear representation:

Sl =
1

2
=

1

2

∫ √
|g|d4x

(
M2
p

2
R+

1

M
Rψ − 3ψ2

)
, (2)

if we write equations of motion for ψ we obtain:

1

M
R = 6ψ. (3)

Then if we use a following conformal transformation:

gµν → e−
√

2/3φ/Mpgµν =

(
1 +

2ψ

MM2
p

)
gµν (4)

we get action with scalar field coupled to gravity:

S =
1

2

∫
d4x
√
|g|

(
M2
p

2
R+

1

2
∂µ∂

µφ− 3

4
M4
pM

2
(

1− e−
√

2/3φ/Mp

))
. (5)
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R2 Term gives equivalent solutions as the evolution of scalar field with expo-
nential type potential. According to Planck data, Starobinsky model and its
descendants are the main class of models which has correct tensor to scalar
ratio and scalar-tilt:

ns − 1 ≈ − 2

N
r ≈ 12

N2
, (6)

with N being the number of e-folds.

4 Eternal inflation

In this section, based on (4), we will show, under what circumstances the in-
flation does not end. This behavior is called eternal inflation and provides
restrictions on free parameters in popular inflationary models.

Consider a classical solution to Einstein Equations in inflationary FLRW
metric, in the slow-roll approximation:

3Hφ̇+
∂V

∂φ
= 0, H2M2

Pl =
1

3
V (φ) .

The background field method provides a description of the fluctuating quantum
field in the classical background:

φ (t, ~x) = φcl (t, ~x) + δφ (t, ~x) .

Fluctuation are normally distributed and averaged over the Hubble volume.
Equation of motion for the full field takes form of slow roll equation, with
additional noise term:

3Hφ̇+
∂V

∂φ
= N (t) ,

where N (t) is a Gaussian distribution with mean equal 0 and variance σ = H3t
4π2 .

4.1 Field evolution

In the covered cases, the inflaton decays exponentially with time. To see this,
consider a set of scalar fields: φ = {φ1, . . . , φn}. Time evolution of the fields’
probability density is given by the Fokker-Planck equation:

Ṗ [φ, t] =
1

2
(
H3

4π2
)∂i∂

iP [φ, t] +
1

3H
∂i
(
∂iV (φ)P [φ, t]

)
, (7)

where ∂i := ∂
∂φi , Ṗ [φ, t] := ∂

∂tP [φ, t]. Above equation is difficult to solve for a

general potential V (φ), but it can be solved for a sum-separable potential:

V (φ) = V0 +

N∑
i=1

Vi
(
φi
)
, (8)
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with Vi
(
φi
)

linear or quadratic, under the assumption that H is constant, i.e.

H2M2
Pl =

V0

3
. (9)

Under these assumptions, the solution takes a simple multivariate Gaussian
form:

P [φ, t] =

N∏
i=1

Pi[φi, t], (10)

with

Pi[φi, t] =
1

σi (t)
√

2π
exp

[
− (φi − µi (t))

2

2σi (t)
2

]
. (11)

Case 1: Free Massless Field V (φ) = V0

For a constant potential equation (7) is solved by a Gaussian distribution (11)
with

µ (t) = 0, σ2 (t) =
H3

4π2
t. (12)

A delta-function distribution initially centered at φ = 0 will remain centered at φ
= 0 for all time, however, it will spread out by an amount σ

(
t = H−1

)
= H/2π

after a Hubble time. This represents the standard “Hubble-sized” quantum fluc-
tuations that are well-known in the context of inflation, famously imprinting in
the CMB and ultimately seeding the observed large-scale structure.
Case 2: Linear Potential V (φ) = V0 − αφ
For the linear potential Fokker-Planck is again solved by a the Gaussian distri-
bution (11) with:

µ (t) =
α

3H
t, σ2 (t) =

H3

4π2
t, (13)

the time-dependence of µ (t) is explained by the classical rolling of the field in
the linear potential, which is governed by the slow-roll equation of motion

3Hφ̇ = −∂V
∂φ

= α. (14)

The time-dependence of σ2 (t) is due purely to Hubble-sized quantum fluctua-
tions, and indeed it precisely matches the result in the free massless case.
For a linear and quadratic potential the equation simplifies to the heat equation,
hence the solutions are gaussian. Near the top of the hill, the potential can be
approximated by a constant, then the solving distribution is of the form:

P [φ, t] =

√
2π

H3t
exp

(
−2π2φ2

H3t

)
,
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assuming initially it was delta-like centered at φ = 0. The probability distri-
bution is decreasing with time, it remains centered at the initial position. For
linearly decreasing potential V (φ) = V0 − αφ the solution is:

P [φ, t] =

√
2π

H3t
exp

(
−

2π2
(
φ− α

H t
)2

H3t

)
,

notice the mean value of the field increases linearly with time. This fact is un-
derstood as field rolling down the hill’s slope according to the slow-roll equation:
3Hφ̇ = α.

4.2 Eternal inflation Conditions

Under what conditions the eternal inflation occurs? To answer this question,
consider once again linear potential. The condition for the slow-roll is:

εV :=
M2
Pl

2

(
α

V (φ)

)2

� 1.

It is satisfied for φ < 0, assuming MPlα � V0. The field increases with time,
due to the equation of motion, hence by the time φc = V0

α −
Mpl√

2
slow-roll will

stop εV ≈ 1. The Probability density tends to 0, when t −→ ∞, thus the
probability that inflation still lasts is:

Pr[φ < φc] =

∫ φc

−∞
dφP [φ, t]

also vanishes at sufficiently long times. It appears that from the point of the
Fokker-Planck equation inflation stops at some point. However, there is an
additional effect to be included- expansion of the Universe. Assuming the initial
volume of the Universe to be U0, the size of the Universe depends on time
according to:

U (t) = U0e
3Ht.

One can interprete the probability Pr[φ < φc] as fraction of the volume U (t)
still inflating, that is:

Uinflating (t) = U0e
3HtPr[φ < φc].

Evaluating the integral for probability density, in the linear case gives:

Pr[φ < φc] =
1

2
erfc

(
α

3H t− φc
H
2π

√
2Ht

)
.

The error function may be approximated by an exponential:

Pr[φ < φc] = C (t) exp

(
−4π2α2

18H5
t

)
,
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where C (t) is power-law in t. φc vanished from the final approximation of the
probability, this occurs also in theories with more complicated potentials. By
comparing the exponentials we can check, whether Uinflating will grow or tend
to zero. The condition for eternal inflation to occur becomes:

3H >
4π2α2

18H5
,

now using slow-roll EOM: H2M2
Pl = V

3 , and for linear potential α = V ′ (φ)
above condition can be rewritten:

|V ′|
V

3
2

<

√
2

2π

1

M2
Pl

.

This can be interpreted as quantum fluctuations dominating over classical field
rolling. For linear potential, this is satisfied for a large φ.

4.3 Numerical analysis

The set of analytical solutions to the Fokker-Planck equation is not vast. For
the potential given by the hill-top model, V (φ) = V0 − α

pφ
p only for linear and

quadratic cases exact solutions can be found. For higher powers of φ one needs
to rely on numerical solutions. Discretizing the Langevin equation gives:

φn = φn−1 −
1

3H
V ′ (φn−1) δt+ δφq (δt) ,

with δφq (δt) being random number taken from the gaussian distribution with

mean equal zero, and variance H3

4π2 δt. The initial condition was chosen to be
φ0 = 0, while the time step is δt = 1

100H . Since the value of φc is irrelevant
one should check in every iteration, if the fluctuating field is bigger than some
arbitrary value (in our analysis Ht ) and calculate the probability after solving
the equation large number of times. For Starobinsky inflation the potential is
of form:

V (φ) = V0

1− exp

(
−
√

2

3

φ

MPl

)2
 .

In this case, the probability does not decay exponentially, which can be seen on
fig. 3 For a constant Hubble parameter3 10 values of α has been investigated,
and the results have been plotted on Fig. 2. The decay parameter Γ is defined
as follows:

Pr[φ < φc] ∼ e−Γt.

For p = 3 the critical value of αc is 670. The same analysis has been performed
in case of H fluctuating due to equations of motion, the similar critical value
was found αc = 678.

3Even though H can be chosen to be arbitrary constant in the numerical solution, the
relation H2M2

Pl = V (φ) needs to be satisfied
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Figure 1: Solution to the Langevin equation in hilltop model with p = 3, α =
1000. Notice the exponential decay.

From our considerations we see, that for p = 3 hilltop models with
αc < 670 are excluded because they predict Eternal Inflation. In the Starobinsky
Inflation, this is not the case, and inflation ends independently of the parameters
in the theory.

5 Analytic solutions to the Fokker-Planck Equa-
tion

The study of inflation begins by considering a scalar field theory in a quasi-de
Sitter background:

S =

∫
d4x
√
−g
[

1

2
R+

1

2
gµν∂µφ∂νφ− V (φ)

]
, (15)

with

ds2 = −dt2 + e2Htdx. (16)

The dynamical equations describing the evolution of the scalar field and the
background geometry are given by

3Hφ̇+
∂V

∂φ
= 0. H2M2

Pl =
1

3

(
1

2
φ̇2 + V (φ)

)
(17)

The action for the quantum fluctuations is quadratic, so the fluctuations will be
Gaussian. These fluctuations are averaged over a Hubble volume by defining a
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Figure 2: Decay parameter scales linearly with α, at values bigger than αc ≈ 670
eternal inflation does not occur

Figure 3: Solution to the Langevin equation, for Starobinsky Inflation.
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smeared field

δφH (t) =

∫
d3k

(2π)
3σt (k) δφk (t) , (18)

with δφk a Fourier mode of δφ and σt (k) a smearing function that corresponds
to averaging over one Hubble volume at a time t. The average size of these
Gaussian fluctuations is given by

< [δφH (t)− δφH (0)]2 >=

(
H

2π

)2

Ht, (19)

where

δφq =
H

2π
. (20)

Case 3: : Free Massive Field V (φ) = V0 + 1
2m

2φ2

Equation (7) is solved by a Gaussian distribution (11t ) with

µ (t) = 0, σ2 (t) =
3H4

8π2m2

(
1− exp

[
−2m2

3H
t

])
(21)

The central value of the Gaussian distribution remains fixed at φ = 0 for all
time. In the limit m/H → 0, we may expand the exponential to linear order to
recover the formula for σ2 (t) for the free massless field case in (12).
Case 4: Tachyonic Field V (φ) = V0 − 1

2m
2φ2 The equation (7) is solved by

Gaussian distribution(11) by:

µ (t) = 0, σ2 (t) =
3H4

8π2m2

(
−1 + exp

[
2m2

3H
t

])
(22)

The central value of the Gaussian distribution stays at φ = 0.

6 Conclusion

In the work, we have presented various models of inflation with appropriate the-
oretical introduction. The Principle of No Eternal Inflation provided a valuable
tool for excluding theories which do not predict the end of inflation. Detailed
numerical analysis of the hilltop p = 3 model has been performed and the results
obtained in (4) has been verified. The lower boundary of the proportionality
parameter α has been estimated αc = 678. The discussed Starobinsky Inflation
does not predict Eternal Inflation and remains a valid candidate for the history
of the Universe.
Program created for the numerical analysis works for any given potential term
and may be used to predict Eternal Inflation in future work on more complex
theories.
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